药用植物转录组研究现状与展望

严志祥, 罗茜, 张翼冠, 赵军宁

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (7) : 513-520.

PDF(1552 KB)
PDF(1552 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (7) : 513-520. DOI: 10.11669/cpj.2019.07.001
·综 述·

药用植物转录组研究现状与展望

  • 严志祥, 罗茜, 张翼冠, 赵军宁*
作者信息 +

A Brief Review on Medicinal Plants Transcriptome Research

  • YANZhi-xiang, LUOXi, ZHANGYi-guan, ZHAOJun-ning*
Author information +
文章历史 +

摘要

我国是世界上药用植物种质资源最丰富的国家之一。而基于我国数千年生产和实践的道地药材是优质中药材的代名词。研究药用植物药效相关的遗传基因,尤其是为中医临床所公认的道地药材,与保护植物种质资源、指导药材采集和生产、揭示药效功能分子机制提供了一个新的思路。随着高通量测序技术的普及和测序成本的降低,药用植物基因转录组研究得到了较大的发展。笔者围绕转录组学在药用植物研究中的研究现状进行综述和展望,指出了遗传资源的整合和多学科联合研究在药用植物研究中的重要性。

Abstract

China is one of the countries with the most abundant germplasm resources of medicinal plants in the world. Genuine medicinal materials, which originated from thousands of years of production and clinical practice in China, is synonymous with high-quality Chinese medicine. The study on the pharmacodynamic genes of medicinal plants, especially the traditional Chinese medicine, has provided a new idea for the germplasm resources protection, medicinal plant usage optimization and functional molecular discovery. With the advancement of high-throughput sequencing technology and the reduction of the cost of sequencing, the research on the medicinal plants transcriptome has been greatly developed. This article reviewed medicinal plant transcriptome study in recent years and present the importance of large-scale dataset from different field.

关键词

药用植物 / 中药 / 转录组 / 遗传资源

Key words

medicinal plants / traditional Chinese medicine / transcriptome / genetic resources

引用本文

导出引用
严志祥, 罗茜, 张翼冠, 赵军宁. 药用植物转录组研究现状与展望[J]. 中国药学杂志, 2019, 54(7): 513-520 https://doi.org/10.11669/cpj.2019.07.001
YANZhi-xiang, LUOXi, ZHANGYi-guan, ZHAOJun-ning. A Brief Review on Medicinal Plants Transcriptome Research[J]. Chinese Pharmaceutical Journal, 2019, 54(7): 513-520 https://doi.org/10.11669/cpj.2019.07.001
中图分类号: R282   

参考文献

[1] WANG C, WU Z C. Investigation on exploitation and utilization of medicinal biological resources in China[J]. Bull Chin Acad Sci(中国科学院院刊), 1996, 6:423-429.
[2] State Administration of Traditional Chinese Medicine of the People′s Republic of China. Q&a 41-50, outline of strategic planning for the development of traditional Chinese medicine (2016-2030) [EB/OL]. Peking, 2017, http://www.satcm.gov.cn/ fajiansi /zhengcewenjian/2018-03-24/2476.html.
[3] COSTA V, ANGELINI C, FEIS I D, et al. Uncovering the complexity of transcriptomes with RNA-Seq[J]. J Biomed Biotechnol, 2010:853916.
[4] WANG Z, MARK G, MICHAEL S. RNA-Seq:a revolutionary tool for transcriptmics[J]. Nat Rev Genet, 2008, 10:57-63.
[5] WANG Z, GERSTEIN M, SNYDER M, et al. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):57-63.
[6] HUANG C, WU M H, LI G Y. The present and advance in transcriptomics of nasopharyngeal carcinoma[J]. Prog Biochem Biophys(生物化学与生物物理进展), 2007, 34(11):1129-1135.
[7] LIN X H, ZHANG J, LI Y, et al. Functional genomics of a living fossil tree, Ginkgo, based on next-generation sequencing technology[J]. Physiol Plantarum, 2011, 143(3):207-218.
[8] LI S T, ZHANG P, ZHANG M, et al. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate[J]. BMC Genomics, 2012, 13:295.
[9] WU Q, SUN C, LUO H M, et al. Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing[J]. Planta Med, 2011, 77(4):394-400.
[10] DENG N, CHANG E M, LI M H, et al. Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids[J]. Front Plant Sci, 2016, 7:174.
[11] LIU T, LI X X, XIE S Q, et al. RNA-seq analysis of Paris polyphylla var. yunnanensis roots identified candidate genes for saponin synthesis[J]. Plant Diversity, 2016, 38(3):163-170.
[12] SINGH P, SINGH G, BHANDAWAT A, et al. Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum[J]. Sci Rep, 2017, 7:45295.
[13] GUO X, LI Y, LI C F, et al. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers[J]. Gene, 2013, 527 (1):131-138.
[14] ZHENG X F, PAN C, DIAO Y, et al. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae)[J]. BMC Genomics, 2013, 14:490.
[15] WEI L, LI S H, LIU S G, et al. Transcriptome analysis of Houttuynia cordata Thunb. by illumina paired-end RNA sequencing and SSR marker discovery[J]. PLoS One, 2014, 9(1):e84105.
[16] ZENG S H, XIAO G, GUO J, et al. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim[J]. BMC Genomics, 2010, 11:94.
[17] XIE D M, YU N J, HUANG L Q, et al. Next generation sequencing and transcriptome analysis of root bark from Paeonia suffruticosa cv. Feng Dan[J]. China J Chin Mater Med (中国中药杂志), 2017, 42 (5):2954-2961.
[18] PATHAK S, LAKHWANI D, GUPTA P, et al. Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis[J]. PLoS One, 2013, 8(5):e65622.
[19] ZENG J G, LIU Y S, LIU W, et al. Integration of transcriptome, proteome and metabolism data reveals the alkaloids biosynthesis in Macleaya cordata and Macleaya microcarpa[J]. PLoS One, 2013, 8(1):e53409.
[20] ZHANG L B, JIA H B, YIN Y T, et al. Transcriptome analysis of leaf tissue of Raphanus sativus by RNA sequencing[J]. PLoS One, 2013, 8(11):e80350.
[21] BAKEL H V, STOUT J M, COTE A G, et al. The draft genome and transcriptome of Cannabis sativa[J]. Genome Biol, 2011, 12(10):R102.
[22] HAO D C, MA P, MU J, et al. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum[J]. Sci China Life Sci, 2012, 55(5):452-466.
[23] LOKE K K, RAHNAMAIE-TAJADOD R, YEOH C C, et al. Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids[J]. Peer J, 2017, 5:e2938.
[24] ZHANG Z, GAO Z H, WEI J H, et al. The mechanical wound transcriptome of three-year-old Aquilaria sinensis[J]. Acta Pharm Sin(药学学报), 2012, 47(8):1106-1110.
[25] JIANG B, XIE D S, LIU W R, et al. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida)[J]. PLoS One, 2013, 8(8):e71054.
[26] CHEN J, WU X T, XU Y Q, et al. Global transcriptome analysis profiles metabo-lic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao[J]. BMC Genomics, 2015, 16(7):S15.
[27] FALARA V, FOTOPOULOS V, MARGARITIS T, et al. Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus[J]. Plant Mol Biol, 2008, 68(6):633-651.
[28] FATIMA T, SNYDER C L, SCHROEDER W R, et al. Fatty acid composition of develo-ping sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed[J]. PLoS One, 2012, 7(4):e34099.
[29] SHARMA P C, JAIN A, CHAUDHARY S. Transcriptome anal-ysis in seabuckthorn (Hippophae rhamnoides L.), a medicinally important plant[C]. Bangkok(Thailand):International Conference on Environmental and Biological Sciences, 2012:21-24.
[30] GHANGAL R, CHAUDHARY S, JAIN M, et al. Optimization of de novo short read asse-mbly of seabuckthorn (Hippophae rhamnoides L.) transcriptome[J]. PLoS One, 2013, 8(8):e72516.
[31] JAIN A, CHAUDHARY S, SHARMA P C. Miningof microsatellites using next genera-tion sequencing of seabuckthorn (Hippophae rhamnoides L.) transcriptome[J]. Physiol Mol Biol Plants, 2014, 20(1):115-123.
[32] SATHYANARAYANA N, PITTALA R K, TRIPATHI P K, et al. Transcriptomic resources for the medicinal legume Mucuna pruriens:de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers[J]. BMC Genomics, 2017, 18(1):409.
[33] XU L, WANG J B, LEI M, et al. Transcriptome analysis of storage roots and fibrous roots of the traditional medicinal herb Callerya speciosa (Champ.) ScHot[J]. PLoS One, 2016, 11(8):e0160338.
[34] ZHANG F Q, GAO Q B, KHAN G, et al. Comparative transcriptome analysis of aboveground and underground tissues of Rhodiola algida, an important ethno-medicinal herb endemic to the Qinghai-Tibetan Plateau[J]. Gene, 2014, 553(2):90-97.
[35] HAN R C, TAKAHASHI H, NAKAMURA M, et al. Transcriptome analy-sis of nine tissues to discover genes involved in the biosynthesis of active ingredi-ents in Sophora flavescens[J]. Biol Pharm Bull, 2015, 38:876-883.
[36] LI Y, LUO H M, SUN C, et al. EST analysis reveals putative genes involved in glycyrrhizin biosynthesis[J]. BMC Genomics, 2010, 11:268.
[37] SUN Y Z, LUO H M, LI Y, et al. Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport[J]. BMC Genomics, 2011, 12:533.
[38] KRISHNAN N M, PATTNAIK S, JAIN P, et al. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica[J]. BMC Genomics, 2012, 13:464.
[39] SUN C, LI Y, WU Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomics, 2010, 11:262.
[40] WU D, AUSTIN R S, ZHOU S J, et al. The root transcriptome for North American ginseng assembled and profiled across seasonal development[J]. BMC Genomics, 2013, 14:564.
[41] JAYAKODI M, LEE S C, PARK H S, et al. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots[J]. J Ginseng Res, 2014, 38(4):278-288.
[42] LUO H M, SUN C, SUN Y Z, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12:S5.
[43] SUI C, CHEN M, XU J S, et al. Comparison of root transcriptomes and expressions of genes involved in main medicinal secondary metabolites from Bupleurum chinense and B. scorzonerifolium, the two Chinese official Radix bupleuri source species[J]. Physiol Plant, 2015, 153(2):230-242.
[44] ZHONG T, ZHANG H, DUAN X Y, et al. Anti-obesity effect of radix Angelica sinensis and candidate causative genes in transcriptome analyses of adipose tissues in high-fat diet-induced mice[J]. Gene, 2017, 599:92-98.
[45] GUPTA P, GOEL R, AGARWAL A V, et al. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera[J]. Sci Rep, 2015, 5:18611.
[46] GARZÓNMARTÍNEZ G A, ZHU Z I, LANDSMAN D, et al. The Physalis peruviana leaf transcriptome:assembly, annotation and gene model prediction[J]. BMC Genomics, 2012, 13:151.
[47] KHALDUN A B, HUANG W J, LIAO S H, et al. Identification of microRNAs and target genes in the fruit and shoot tip of lycium Chinense: a traditional Chinese medicinal plant[J]. PLoS One, 2015, 10(1):e0116334.
[48] GAHLAN P, SINGH H R, SHANKAR R, et al. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments[J]. BMC Genomics, 2012, 13:126.
[49] SUN P, SONG S H, ZHOU L L, et al. Transcriptome analysis reveals putative genes involved in iridoid biosynthesis in Rehmannia glutinosa[J]. Int J Mol Sci, 2012, 13:13748-13763.
[50] WANG F Q, ZHI J Y, ZHANG Z Y, et al. Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa Hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis[J]. Front Plant Sci, 2017, 8:787.
[51] WU B, LI Y, YAN H X, et al. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea[J]. BMC Genomics, 2012, 13:15.
[52] KOTWAL S, KAULS, SHARMA P, et al. De novo transcriptome analysis of medicinally important Plantago ovata using RNA-Seq[J]. PLoS One, 2016, 11 (3):e0150273.
[53] HUANG L L, YANG X, SUN P, et al. The first illumina-based De novo transcriptome sequencing and analysis of safflower flowers[J]. PLoS One, 2012, 7 (6):e38653.
[54] LI Y, SUN C, LUO H M, et al. Transcriptome characterization for Salvia miltiorrhizausing 454 GS FLX[J]. Acta Pharm Sin(药学学报),2010, 45 (4):524-529.
[55] HUA W P, ZHANG Y, SONG J, et al. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients[J]. Genomics, 2011, 98(4):272-279.
[56] YANG L, DING G H, LIN H Y, et al. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis[J]. PLoS One, 2013, 6(11):e80464.
[57] GAO W, SUN H X, XIAO H B, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza[J]. BMC Genomics, 2014, 15:73.
[58] SONG Z Q, GUO L L, LIU T, et al. Comparative RNA-sequence transcriptome analysis of phenolic acid metabolism in Salvia miltiorrhiza, a traditional chinese medicine model plant[J]. Int J Genomics, 2017:9364594.
[59] CHERUKUPALLI N, DIVATE M, MITTAPELLI S R, et al. De novo assembly of leaf transcriptome in the medicinal plant Andrographis paniculata[J]. Front Plant Sci, 2016, 7:1203.
[60] HE M, WANG Y, HUA W P, et al. De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites[J]. PLoS One, 2012, 7(7):e42081.
[61] KWON C W, PARK K M, KANG B C, et al. Cysteine protease profiles of the medicinal plant Calotropis procera R. Br. revealed by de novo transcriptome analysis[J]. PLoS One, 2015, 10(3):e0119328.
[62] LIU Y, WANG Y, GUO F X, et al. Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the tibetan medicinal plant Swertia mussotii[J]. Sci Rep, 2017, 7:43108.
[63] ZHANG X D, ALLAN A C, LI C X, et al. De novo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens[J]. Int J Mol Sci, 2015, 16(5):11550-11573.
[64] KAUSHIK P, KUMAR S. Data of de novo assembly of the leaf transcriptome in Aegle marmelos[J]. Data Brief, 2018,19:700-703.
[65] HOU D Y, SHI L C, YANG M M, et al. De novo transcriptomic analysis of leaf and fruit tissue of Cornus officinalis using illumina platform[J]. PLoS One, 2018,13(2):e0192610.
[66] HUANG H Y, DU H Y, TAN W Y, et al. Development of SSR molecular markers based on transcriptome sequencing of Eucommia ulmoides[J]. Sci Silv Sin (林业科学), 2013, 49(5):176-181.
[67] HOWYZEH M S, NOORI S A S, VAHID S J, et al. Comparative transcriptome analysis to identify putative genes involved in thymol biosynthesis pathway in medicinal plant Trachyspermum ammi L.[J]. Sci Reports, 2018, 8:13405.
[68] NI J, DONG L X, JIANG Z F, et al. Comprehensive transcriptome analysis and flavonoid profiling of Ginkgo leaves reveals flavonoid content alterations in day-night Cycles[J]. PLoS One, 2018, 13(3):e0193897.
[69] VASHITH D, KUMAR R, RASTOGI S, et al. Transcriptome changes induced by abiotic stresses in Artemisia annua[J]. Sci Reports, 2018, 8(1):3423.
[70] TAN X M, ZHOU Y Q, CHEN J, et al. Advances in research on diversity of endophytic fungi from medicinal plants[J]. Chin Pharm J (中国药学杂志), 2015, 50(18):1563-1580.
[71] MAMEDOV N. Medicinal plants studies: history, challenges and prospective[J]. Med Aromatic Plants, 2012, 1:8.
[72] MATASCI N, HUNG L H, YAN Z X, et al. Data access for the 1 000 plants (1 kP) project[J]. Giga Sci, 2014,3:17.
[73] HUANG L Q, GUO L P, HUA G D, et al. Attributes of Chinese geoherbs and its study strategy[J]. Chin J Inform Tradit Chin Med(中国中医药信息杂志), 2007, 14(2):44.
[74] HUANG L Q, CHEN M L, XIAO P G.The modern biological basis and model hypothesis for the study of Chinese medicinal materials′ pathogenicity[J]. China J Chin Mater Med (中国中药杂志), 2004, 29(6):494.

基金

国家重大科技专项“重大新药创制”课题资助(2011ZX09401-304);深圳市知识创新计划资助(基20160126);四川省中医药管理局课题资助(20017Z001)
PDF(1552 KB)

Accesses

Citation

Detail

段落导航
相关文章

/